Influence of genetic polymorphisms of styrene-metabolizing enzymes and smoking habits on levels of urinary metabolites after occupational exposure to styrene.
نویسندگان
چکیده
Here we evaluate the influence of individual genetic polymorphisms of drug-metabolizing enzymes as well as body mass index (BMI) and lifestyle (smoking, alcohol consumption) on urinary metabolites after occupational exposure to styrene. Seventy-three workers exposed to styrene in a reinforced-plastics workplace were studied. The personal styrene exposure in the air and the urinary styrene metabolites mandelic acid and phenylglyoxylic acid were measured. The subjects' genetic polymorphisms in the genes that encode the styrene-metabolizing enzymes CYP2E1, CYP2B6, EPHX1, GSTM1, GSTT1 and GSTP1 were determined. Neither genotype nor lifestyle significantly affected urinary metabolites. There was, however, an interaction between the CYP2E1 genotype and smoking. Among non-smokers, urinary styrene metabolites were significantly decreased in subjects with c1/c1 alleles of CYP2E1 as compared with those with the c1/c2 genotype. There was no significant difference in urinary metabolites among smokers. When the combined influence of the CYP2B6 genotype and the predicted activity of EPHX1 were examined, urinary metabolites in subjects with low enzyme activity were lower than in those with medium or high activity after high styrene exposure (>or=50 ppm). The results suggest that genetic susceptibility and lifestyle should be considered in biological monitoring of exposure to styrene.
منابع مشابه
Effects of Styrene-metabolizing Enzyme Polymorphisms and Lifestyle Behaviors on Blood Styrene and Urinary Metabolite Levels in Workers Chronically Exposed to Styrene
The aim of this study was to investigate whether genetic polymorphisms of CYP2E1, GSTM1, and GSTT1 and lifestyle habits (smoking, drinking, and exercise) modulate the levels of urinary styrene metabolites such as mandelic acid (MA) and phenylglyoxylic acid (PGA) after occupational exposure to styrene. We recruited 79 male workers who had received chronic exposure in styrene fiberglass-reinforce...
متن کاملInfluence of Genetic Polymorphism of Styrene-Metablizing Enzymes on Occupational Exposure Monitoring to Styrene
In this study, we selected 58 styrene-exposed workers, measured personal styrene exposure, evaluated genotypes relevant drug-metabolizing enzymes (CYP2E1, EPHX1, GSTM1 and GSTT1) which may explain the variability in the urinary metabolite excretion. The results showed that, in different levels of styrene exposure groups, there is a significant association between urinary metabolites and some ge...
متن کاملOccupational exposure to styrene: modulation of cytogenetic damage and levels of urinary metabolites of styrene by polymorphisms in genes CYP2E1, EPHX1, GSTM1, GSTT1 and GSTP1.
Styrene is widely used in the production of various plastics, synthetic rubber and resins. The aim of this study was to evaluate if individual polymorphisms in xenobiotic metabolizing enzymes, related with the metabolic fate of styrene, could modify individual susceptibility to the possible genotoxic effects of the styrene exposure. Twenty-eight reinforced plastic workers and 28 control subject...
متن کاملSignificant association between decreased ALDH2 activity and increased sensitivity to genotoxic effects in workers occupationally exposed to styrene
ALDH2 is involved in the metabolism of styrene, a widely used industrial material, but no data are available regarding the influence of this enzyme on the metabolic fate as well as toxic effects of this chemical. In this study, we recruited 329 workers occupationally exposed to styrene and 152 unexposed controls. DNA strand breaks, DNA-base oxidation in leukocytes and urinary 8-hydroxydeoxyguan...
متن کاملEffects of simultaneous exposure to noise and styrene on rat liver enzymes
Background: Liver is an important organ that responsible for biological detoxification. There are few studies about the effect of co-exposure to organic solvents and noise on hepatic system enzymes. The study aim was to assess the effects of short-term exposure to noise and styrene on rat liver enzymes. Materials and Methods: In this experimental study, we studied the liver enzymes of male r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology letters
دوره 160 1 شماره
صفحات -
تاریخ انتشار 2005